

Release of the Alpha Test JNISpice Toolkit for Review
==

 The Alpha Test JNISpice Toolkit is a prototype of "JNISpice": a product
 that provides an object-oriented Java interface to the C-language SPICE
 Toolkit CSPICE.

 This prototype product is available to volunteer testers to enable review,
 with the aim of finalizing the specification and design of the product.

 Reviewers of this prototype should already be very familiar with the SPICE
 system and be fluent in the Java language. Documentation provided in this
 product is not adequate to make the system easily understandable by SPICE
 or Java novices.

 Below, we briefly discuss the review process. Following that are
 discussions of Alpha Test JNISpice Toolkit installation, the contents and
 status of the Alpha Test JNISpice Toolkit, regression testing, and running
 JNISpice-based user applications.

Regarding a Python interface to CSPICE

 Those interested in PythonSpice, a Python and C-based analog of JNISpice
 that NAIF may develop, may wish to review the API of JNISpice, since NAIF's
 preliminary plan is to employ substantially parallel class designs for the
 high-level APIs of these products.

Reviewing the Alpha Test JNISpice Toolkit
==

Scope of review
--

 All aspects of the JNISpice system specification, design, implementation,
 and documentation are ``fair game'' for review. Reviewers are asked to keep
 in mind that the purpose of the product is to to provide to Java
 applications convenient access to existing SPICE capabilities.

 A list of known technical issues and deficiencies of the current system is
 provided below in Appendix A; this might serve as a starting point for
 discussion.

 Since this system is a prototype under construction, much of the
 documentation that would be present in a standard SPICE Toolkit has not
 been provided. However, if expected functionality is missing and has not
 been noted in the ``known issues'' list, it would be helpful if reviewers
 were to point it out.

 NAIF requests that reviewers run the JNITspice regression test suite on
 their host systems. See the section below titled ``Regression testing'' for
 details. NAIF would appreciate receiving logs of any failed tests.

Review time frame
--

 NAIF would like to collect all review comments by May 1, 2010.

Contacting NAIF
--

 Reviewers are requested to send comments to NAIF via e-mail to the JNISpice
 author Nat Bachman and NAIF manager Chuck Acton:

 Nathaniel.Bachman@jpl.nasa.gov
 Charles.H.Acton-Jr@jpl.nasa.gov

Installing the Alpha Test JNISpice Toolkit
==

Supported platforms

 JNISpice requires that JDK version 1.5 or higher be installed on the host
 system.

 The host system must be one for which a version of CSPICE is available. The
 one exception is the Mac Intel 64-bit CSPICE platform, which is not yet
 officially supported by NAIF, but for which a JNISpice Toolkit is
 available.

 Each JNISpice Toolkit will work only on the host system for which it is
 targeted, so it's important to download the correct version. The supported
 platforms are

 MacIntel_OSX_AppleC_Java1.5_32bit
 MacIntel_OSX_AppleC_Java1.5_64bit
 PC_Linux_GCC_Java1.5_32bit
 PC_Linux_GCC_Java1.5_64bit
 PC_Windows_VisualC_Java1.5_32bit
 Sun_Solaris_GCC_Java1.5_32bit
 Sun_Solaris_GCC_Java1.5_64bit
 Sun_Solaris_SunC_Java1.5_32bit

Obtaining the Alpha Test JNISpice Toolkit

 Reviewers may obtain Alpha Test JNISpice Toolkit packages from the NAIF
 server

 naif.jpl.nasa.gov

 via anonymous ftp. The packages are located in the platform-specific
 subdirectories of the path

 pub/naif/misc/JNISpice

 Each of the platform-specific subdirectories contains the subdirectories
 ``packages'' and ``executables.'' The ``executables'' directory contains
 the standard CSPICE utility programs. The ``packages'' subdirectory
 contains the Alpha Test JNISpice Toolkit packages.

Installation

 Reviewers should select a path on their host systems under which to intall
 the JNISpice Toolkit. Below, we'll symbolize this path using the token

 <mypath>

 Reviewers should place the compressed tar file (Unix) or self-extracting
 archive (Windows)

 JNISpice.tar.Z [Unix]
 JNISpice.exe [Windows]

 in

 <mypath>

 and then execute

 importJNISpice.csh [Unix]
 JNISpice.exe [Windows]

 On Unix platforms, the installation script will extract files from the
 JNISpice package. On Windows platforms, the Toolkit will be extracted from
 the archive file. In each case, the C libraries and Java class files have
 already been built, so users need not perform any build tasks unless these
 files turn out to be incompatible with the host systems.

 If necessary, reviewers can re-build the C libraries of the JNISpice
 Toolkit manually by executing the ``makeall.csh'' or ``makeall.bat'' script
 in the top-level path of the installed JNISpice Toolkit.

 Note that the ``makeall'' script does not automatically recompile the
 JNISpice Toolkit's Java source code. NAIF does not expect that re-compiling
 the Java source code will be necessary, but if it is, reviewers can
 recompile that code by executing the ``mkjnijava.csh'' or ``mkjnijava.bat''
 script in the path

 <mypath>/JNISpice/src/JNISpice [Unix]

 <mypath>\JNISpice\src\JNISpice [Windows]

JNISpice Contents
==

Installed JNISpice Toolkit
--

 The installed JNISpice Toolkit is essentially a CSPICE Toolkit with
 JNISpice-specific modifications:

 -- The ``src'' path of the installed directory tree contains an
 extra subdirectory called JNISpice. JNISpice-specific C and
 Java source code files are located in and under this
 subdirectory. This JNISpice subdirectory and its
 subdirectories contain all of the javadoc-generated HTML
 pages constituting the JNISpice API reference guide.

 -- The ``src'' path contains a subdirectory for the C-language
 source code of the test utility library tutils_c.

 -- The file index.html in the path ``doc/html'' (Unix) or
 ``doc\html'' (Windows) of the installed directory tree
 contains a hyperlink to the ``Overview'' HTML page of the
 JNISpice API Reference Guide.

 This index file is the recommended starting point for viewing
 the JNISpice API documentation.

 -- This index file also has had two CSPICE-specific links
 deleted: those for the permuted index and ``most used''
 functions.

 -- The ``lib'' path of the installed directory tree contains the
 JNISpice shared object library (Unix) or DLL (Windows), as
 well as the test utility library tutils_c.a.

 -- The ``exe'' path of the installed directory tree contains the
 regression test main program class file JNITspice.class.

JNISpice components
--

 JNISpice provides Java applications access to CSPICE via Java's "native
 interface" (JNI) capability. JNISpice provides both a high-level,
 object-oriented Java interface, and a low-level Java interface consisting
 of native methods. Native methods are implemented via C-language wrappers
 for CSPICE functions.

 JNISpice includes a regression test system called JNITspice. Reviewers are
 encouraged to run JNITspice to verify correct operation of JNISpice on
 their host systems. The code comprising JNITspice is independent of that
 providing standard SPICE functionality and does not affect the behavior of
 JNISpice-based applications.

 All JNISpice Java and C source code files are included in this JNISpice
 Toolkit.

 A complete N0063 CSPICE Toolkit is included as part of JNISpice. This
 Toolkit provides the CSPICE library required by the JNISpice Toolkit. It
 also provides the standard SPICE Toolkit utility programs.

 As with all other SPICE Toolkits, JNISpice is a stand-alone product: it
 does not depend on or interact with any SPICE Toolkits you may have already
 installed on your system.

Documentation

 The primary documentation for JNISpice is a set of HTML pages generated
 from JNISpice source code comments via the javadoc utility. This
 documentation can be accessed by following the hyperlink titled

 Alpha Test JNISpice API Reference Guide

 from the start page provided by the file

 index.html

 which resides in the path

 <mypath>/JNISpice/doc/html [Unix]

 <mypath>\JNISpice\doc\html [Windows]

 of the installed JNISpice Toolkit. Here

 <mypath>

 denotes the host system path under which the JNISpice Toolkit is installed.

 Following this link will cause the JNISpice Overview page to be displayed;
 all pages generated by javadoc can be accessed from this page.

Product status
--

 This prototype system is at an "alpha test" level of maturity. At this
 stage, significant changes may still be made to the system's public
 interface, prior to the release of the system's first official version. As
 with all other SPICE Toolkits, once an official version has been released,
 the initial public interface will be supported for the life of the system.

 A significant number of changes to the top-level Java API are planned: the
 known deficiencies listed below in the section titled "Technical Issues"
 will be corrected. The review process likely will result in further
 updates.

 The design of the C wrapper layer is thought to be close to completion;
 only minor error handling enhancements are planned at this point.

 At this early stage of JNISpice development, little effort has been
 expended on documentation of the API layer. Each class and method has at
 least a one-line description, but only a small subset of the key APIs have
 more detailed documentation. The section titled "Documentation" on the
 Overview HMTL page links to headers that contain example programs.

 The included regression test system JNITspice is intended to exercise all
 of the methods of JNISpice's API-level classes: these are the classes in
 package spice.basic. However, JNITspice has not been reviewed by the NAIF
 team and cannot be guaranteed to completely test all of the code it's meant
 to cover.

Regression testing
==

 The installed JNISpice Toolkit will contain the Java class file

 JNITspice.class

 in the path

 <mypath>/JNISpice/exe [Unix]

 <mypath>\JNISpice\exe [Windows]

 where

 <mypath>

 denotes the path under which the JNISpice Toolkit is installed.

 To run the regression test, cd to the path shown, then execute

 [Unix 32-bit systems]

 java -cp .:../src/JNISpice -Djava.library.path=../lib JNITspice

 [Unix 64-bit systems]

 java -d64 -cp .:../src/JNISpice -Djava.library.path=../lib
 JNITspice

 [Windows 32-bit systems]

 java -cp .;..\src\JNISpice -Djava.library.path=..\lib JNITspice

 When executed, the test suite will produce a log file having a name of the
 form

 JNISpicenn.log

 where nn denotes a version number. If all tests passed, a file named

 passnnnn.log

 will be generated. If any tests failed, a file named

 ERRnnnn.log

 will be generated.

Running JNISpice-based user applications
==

 In order for JNISpice-based applications to run, the JNISpice shared object
 library (Unix) or DLL (Windows) must be loaded; in order for this to
 happen, the path of the library must be known to the ``java'' launcher.

 Additionally, the location of the root of the directory tree containing the
 JNISpice classes must be known to the launcher.

 Both of these paths can be specified as command-line arguments included in
 the ``java'' command. For examples, see the commands used to run JNITspice
 above in the ``Regression testing'' section.

 The JNISpice classes that contain complete example programs in their
 in-line comments are identified in the JNISpice Overview. These programs
 may serve as a convenient starting point from which to construct custom
 JNISpice-based applications.

 Users should note that run-time diagnostics produced by the Java system
 itself can be cryptic; in particular errors in the arguments of the
 ``java'' command may not result in what might be the expected diagnostics.
 So it can be helpful to inspect the command arguments carefully if one's
 application doesn't run.

Alpha Test JNISpice Technical Issues and Deficiencies
==

February 16, 2010

 This document presents known questions and problems relating to the design,
 implementation, testing, and documentation of the Alpha Test JNISpice
 Toolkit.

 For some issues, a brief rationale for a design or implementation choice is
 stated. The question of whether the choice is correct is implied.

Known API issues
--

String parameters

 Many JNISpice classes declare public String constants. Better compile-time
 checking of user application code could be achieved if these constants were
 implemented via classes.

 Note that many String constants cannot be conveniently implemented via
 enums because the constants' values don't conform to variable name syntax
 rules.

Lack of thread safety

 All JNISpice native methods are declared static and synchronized. However,
 these methods must still be considered ``not thread safe'' since the
 underlying C code relies heavily on static variables.

 It is unlikely that this limitation will be removed in a future version of
 JNISpice, since by its design, JNISpice relies on CSPICE for all but the
 most trivial computational capabilities.

Use of package-private or protected class members

 Some classes such as Vector3 contain package-private members. The obvious
 alternate design calls for declaring these members private and providing
 accessor methods.

 The rationale is that the selected privacy option simplifies the
 implementation, increases efficiency of simple operations, and does not
 pose a serious risk of misuse by application developers.

Package and class names

 The JNISpice package names may be revised in the first official JNISpice
 Toolkit.

 Many JNISpice class names are quite long and make source code formatting
 cumbersome. Some of these classes may need to be renamed as well.

Method names

 NAIF plans to replace ``traditional'' matrix-vector arithmetic names such
 as ``mxm'' and ``mxv'' with mnemonic names such as ``add,'' ``sub'' and
 ``mult''; these names will be overloaded, and their meaning will be
 indicated by the object to which they are applied. For example, the method
 call m.mult(v) will invoke matrix-vector multiplication if m is of class
 Matrix33 and v is of class Vector3, while m0.mult(m1) invokes matrix
 multiplication if both m0 and m1 are of class Matrix33.

 Are there problems with this approach, other than the lack of
 cross-language compatibility of names?

Output encapsulation classes

 Certain classes that exist only to encapsulate lists of methods' outputs
 could be withdrawn. For example, the EllipsoidPointNearPoint class serves
 only to package the results of the point/ellipsoid ``near point''
 computation: a surface point and an altitude. It's not clear that the small
 convenience of having the altitude computed automatically is worth the
 additional system complexity resulting from having an additional class.

 Classes that encapsulate a combination of return values and ``found'' flags
 are not candidates for removal.

Variation of API patterns

 Some closely related APIs have unexpected deviations from ``natural''
 parallel functionality. For example, the EulerAngles class contains two
 ``getAngles'' methods: one that accepts an angular unit specifier and one
 that does not. The EulerState class contains only the version of the
 ``getAngles'' method that doesn't accept a unit specifier.

 These variations must be rectified in the official JNISpice Toolkit.

GF search API design

 Geometry Finder (GF) searches are set up via several steps, rather than
 implemented by one method call that requires as many as 25 input arguments.

 While this interface pattern doesn't have a tight, parallel relationship to
 the corresponding CSPICE API pattern, it has the advantages of providing
 far simpler method signatures and greater modularity.

Lack of full support for intermediate-level GF APIs

 Currently no APIs are provided to mimic the functionality of CSPICE's
 gfevnt_c and gffove_c APIs.

 This is a deficiency that must be rectified in the official JNISpice
 Toolkit.

No default GF interrupt handling support

 Unlike CSPICE, the JNISpice GF system doesn't trap control-C inputs by
 default when interrupt handling is enabled for the intermediate-level GF
 occultation search method.

 Some type of default GF interrupt handling capability should be added in
 the official JNISpice Toolkit. Would a simple GUI interface for this be
 useful?

Default GF progress report uses console I/O

 Should this be changed to a GUI interface?

No general dimension vector or matrix support

 No APIs are provided to mimic the functionality of CSPICE's
 general-dimension vector and matrix functions.

 Most of what are thought to be common applications of these functions are

 supported by the classes Vector6 and Matrix66.

 Should general-dimension APIs be added?

Visibility of support classes

 Certain support classes, such as BodyCode and KernelVarDescriptor, perhaps
 should be made private or should be moved to a different package.

Exception classes

 Should there be only one JNISpice exception class?

 In any case, the use of JNISpice exception classes is currently not well
 organized and should be cleaned up.

Support for toString

 Currently, a small set of JNISpice classes override class Object's toString
 method. Most, perhaps all JNISpice classes should override this method.

 Formatting conventions used in JNISpice's toString methods need to be
 standardized.

Limited support for numeric forms of UTC

 No top-level API support is provided for ``UTC seconds past J2000'' or
 ``UTC Julian date.''

 Due to inherent defects of these UTC-based time representations, it doesn't
 make sense to represent them via JNISpice classes analogous to the existing
 JNISpice TDBTime or JED classes.

 Currently, the only API that supports UTC seconds past J2000 is method
 deltet of the low-level class CSPICE.

 Some sort of top-level API support is needed.

Use of constructors rather than factory methods

 The heavy use of public constructors as the principal means of creating
 most JNISpice objects may appear to be a questionable implementation
 choice.

 The main points in favor of this choice are:

 -- The constructor-based design is simple and appears to allow
 critical applications, such as state vector computations, to
 run at reasonable speeds.

 -- The public APIs are not allowed to change, so flexibility in

 selecting new subclasses of returned objects in later
 versions of JNISpice appears to be of no value.

 -- Factory methods can be added later if a need for
 application-specific memory management becomes apparent. This
 is considered to be unlikely.

Class SpiceWindow

 Some aspects of the API of this class need work. Some common SpiceWindow
 operations, such as creation of windows representing time intervals, are
 awkward.

Class GFConstraint

 Some aspects of the API of this class need work. Possibly this class should
 have subclasses for the different types of constraints.

Class SCLK

 Possibly this class should be renamed---the current name leads to code that
 can be confusing to read.

Classes SPK and CK

 Possibly the coverage summary methods of these classes should be made more
 parallel to their CSPICE counterparts.

No support for EK APIs

 Due to expected sparse use of the EK APIs, support for these in JNISpice is
 considered a low priority.

 Is this correct?

C-layer error handling

 JNISpice C-layer utilities could do a better job of diagnosing invalid
 inputs, such as null pointers.

Documentation issues
--

Required Reading files

 Currently only CSPICE versions of Required Reading files are available.

 JNISpice versions are needed.

Permuted index

 No analog of CSPICE's permuted index is available for JNISpice.

 Is a JNISpice version needed?

``Most Used'' Routines

 No analog of CSPICE's ``most used routines'' document is available for
 JNISpice.

 Is a JNISpice version needed?

Class documentation

 Most JNISpice classes have no documentation; full SPICE-quality
 documentation is needed.

Method documentation

 The situation for methods is pretty much the same as for classes.

Package documentation

 Packages lack overview documentation.

Host compatibility issues
--

The host system must use JDK version 1.5 or greater.

 It is not known how many potential JNISpice users will be inconvenienced by
 this restriction.

Java header files

 For the convenience of NAIF developers, the Java header files jni.h and
 jni_md.h are provided in the JNISpice Toolkit. This is not an acceptable
 design for the official JNISpice Toolkit: JNISpice build procedures should
 reference the header files provided by the host system's Java installation.

Test issues
--

Coverage

 Coverage provided by the JNITspice regression test system has not been
 analyzed.

Memory leakage

 Rigorous testing of JNISpice's dynamic memory usage has not been performed.

 JNISpice utility code could do a better job of checking for memory leaks.

Lack of review

 JNITspice test methods have not been reviewed by NAIF staff.

Implementation Issues
--

Lack of coding standards

 NAIF has no official coding standard for Java source code.

 One issue that would be addressed by such a standard is that of naming
 conventions for identifiers used in Java source code.

Class DAF

 Implementation is awkward---may need re-writing.

